Simple Random Walks on Radio Networks (Simple Random Walks on Hyper-Graphs)

نویسندگان

  • Chen Avin
  • Yuval Lando
  • Zvi Lotker
چکیده

In recent years, protocols that are based on the properties of random walks on graphs have found many applications in communication and information networks, such as wireless networks, peer-to-peer networks and the Web. For wireless networks (and other networks), graphs are actually not the correct model of the communication; instead hyper-graphs better capture the communication over a wireless shared channel. Motivated by this example, we study in this paper random walks on hyper-graphs. First, we formalize the random walk process on hyper-graphs and generalize key notions from random walks on graphs. We then give the novel definition of radio cover time, namely, the expected time of a random walk to be heard (as opposed to visit) by all nodes. We then provide some basic bounds on the radio cover, in particular, we show that while on graphs the radio cover time is O(mn), in hyper-graphs it is O(mnr) where n, m and r are the number of nodes, the number of edges and the rank of the hyper-graph, respectively. In addition, we define radio hitting times and give a polynomial algorithm to compute them. We conclude the paper with results on specific hyper-graphs that model wireless networks in one and two dimensions. Keyowrds: Random walks, hyper-graphs, radio networks, cover time, hitting time, wireless networks. ar X iv :0 90 7. 16 78 v1 [ cs .N I] 9 J ul 2 00 9

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Hitting times of Simple Random Walks on Graphs with Congestion Points

We derive the explicit formulas of the probability generating functions of the first hitting times of simple random walks on graphs with congestion points using group representations. 1. Introduction. Random walk on a graph is a Markov chain whose state space is the vertex set of the graph and whose transition from a given vertex to an adjacent vertex along an edge is defined according to some ...

متن کامل

Querying Dynamic Wireless Sensor Networks with Non-revisiting Random Walks

The simplicity and low-overhead of random walks have made them a popular querying mechanism for Wireless Sensor Networks. However, most of the related work is of theoretical nature and present two important limitations. First, they are mainly based on simple random walks, where at each step, the next hop is selected uniformly at random among neighbors. This mechanism permits analytical tractabi...

متن کامل

Simple random walks on wheel graphs

A simple random walk on a graph is defined in which a particle moves from one vertex to any adjacent vertex, each with equal probability. The expected hitting time is the expected number of steps to get from one vertex to another before returning to the starting vertex. In this paper, using the electrical network approach, we provide explicit formulae for expected hitting times for simple rando...

متن کامل

How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs)

Motivated by real world networks and use of algorithms based on random walks on these networks we study the simple random walks on dynamic undirected graphs with fixed underlying vertex set, i.e., graphs which are modified by inserting or deleting edges at every step of the walk. We are interested in the expected time needed to visit all the vertices of such a dynamic graph, the cover time, und...

متن کامل

Coalescent Random Walks on Graphs

Inspired by coalescent theory in biology, we introduce a stochastic model called ”multi-person simple random walks” or “coalescent random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we introduce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0907.1678  شماره 

صفحات  -

تاریخ انتشار 2009